The Role of Analytical Science

- increasing our knowledge and understanding of cultural heritage objects
 - age, composition
 - provenance, authenticity
- assembling information including physical evidence, in order to add cultural value to the heritage
 - composition
 - production processes
- helping to define the conditions, limits, risks, and potential for sustainable conservation and management of human heritage
The Potential of Isotope Research

- age
- provenance
- authenticity
- production processes

- glass and ceramics
- pigments
- metals
- wood and paper
• Isotopes: Atoms of the same element with different mass

 – due to the different number of neutrons in the nucleus

 – have the same chemical properties

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>Mass number</th>
<th>Nuclear number</th>
<th>Isotope ratio</th>
<th>Relative natural abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARBON</td>
<td>12</td>
<td>6</td>
<td>0.011122</td>
<td>98.90%</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>6</td>
<td></td>
<td>1.10%</td>
</tr>
</tbody>
</table>

Isotope ratio: e.g. $^{13}\text{C}/^{12}\text{C} = 0.011122$
Natural variation of isotopic systems

- Natural chemical processes
 - Radioactive decay (e.g. U, Pb, Sr)
 - Redox reactions (e.g. Fe, Mo, Sb)
 - Photoreactions (e.g. Hg)

- Natural physical processes
 - Diffusion (e.g. C, H, O)
 - Precipitation (e.g. H, O)
 - Temperature (e.g. O)

- Natural biochemical processes
 - Microbial, enzymatic activities (e.g. S, N)
 - Plant activities (e.g. C, Fe, Si)
 - Calcification processes (e.g. Ca, Sr)
Isotopes with natural variation

<table>
<thead>
<tr>
<th>Element</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>isotopes with natural variation</td>
</tr>
<tr>
<td>Li</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Be</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Na</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Mg</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>K</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Ca</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Sc</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Ti</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>V</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Cr</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Mn</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Fe</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Co</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Ni</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Cu</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Zn</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Ga</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Ge</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>As</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Se</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Br</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Kr</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Rb</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Sr</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Y</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Zr</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Nb</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Mo</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Tc</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Ru</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Rh</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Pd</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Ag</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Cd</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>In</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Sn</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>Sb</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Te</td>
<td>element with only 1 stable isotope</td>
</tr>
<tr>
<td>I</td>
<td>element with >1 stable isotope</td>
</tr>
<tr>
<td>Xe</td>
<td>element with only 1 stable isotope</td>
</tr>
</tbody>
</table>

\[X^\text{§} \] elements for which natural isotopic variation has been reported using ICP-MS

\[X \] element with only non stable isotopes
Sr isotopic system

Rubidium

\[{}^{87}\text{Rb} \rightarrow {}^{87}\text{Sr} + \beta^- + \bar{\nu} + Q \]

\(T_{1/2} \text{ ... half life (} T_{1/2} = 48.8 \times 10^9 \text{ a) } \)

Strontium

\[{}^{88}\text{Sr} \quad 82.58\% \]

\[{}^{86}\text{Sr} \quad 9.86\% \]

\[{}^{84}\text{Sr} \quad 0.56\% \]

variation of \({}^{87}\text{Sr}/{}^{86}\text{Sr} \) with geological provenance

- geochemical composition
- geological age
Pb isotopic system

variation of Pb isotope ratios
- geological sources
- anthropogenic sources
Isotopes as Tracers of the Past

- provenance
- authenticity
- production processes

isotopic fingerprint tool

<< fingerprint method >>
Isotopic Systems applied in Archaeometry

isotopic systems used in forensics/archaeometry

isotopes with natural variation

element with >1 stable isotope

element with only 1 stable isotope

isotopic systems only used in nuclear or environmental forensics

elements for which natural isotopic variation has been reported using ICP-MS

element with only non stable isotopes
Isotopic Systems applied in Archaeometry

C 49%

N 9.1%

O 15%

S 1.2%

Sr 6.0%

Pb 12%

Nd 0.06%

U 3.0%

H 4.2%

B 0.60%

Mg, Ar, Cu, Ru, Ag, Cd, Sn 0.20%

Os, Sb, Nd, Hg, Pu, Am

'Non traditional isotopes'
Analysis of glass, ceramics and pigments

- isotopic systems used in forensics/archaeometry
- isotopes with natural variation
- element with >1 stable isotope
- element with only 1 stable isotope

- elements for which natural isotopic variation has been reported using ICP-MS
- element with only non stable isotopes

- isotopic systems used in glass analysis

Periodic Table:

- H
- He
- Li
- Be
- B
- C
- N
- O
- F
- Ne
- Na
- Mg
- Al
- Si
- P
- S
- Cl
- Ar
- K
- Ca
- Sc
- Ti
- V
- Cr
- Mn
- Fe
- Co
- Ni
- Cu
- Zn
- Ga
- Ge
- As
- Se
- Br
- Kr
- Rb
- Sr
- Y
- Zr
- Nb
- Mo
- Tc
- Ru
- Rh
- Pd
- Ag
- Cd
- In
- Sn
- Sb
- Te
- I
- Xe
- Cs
- Ba
- La
- Hf
- Ta
- W
- Re
- Os
- Ir
- Pt
- Au
- Hg
- Tl
- Pb
- Bi
- Po
- At
- Rn
- Fr
- Ra
- Ac
- Rf
- Db
- Sg
- Bh
- Hs
- Mt
- Ds
- Rg
- Cn
- Uut
- Fl
- Uup
- Lv
- Uus
- Uuo

- Ce
- Pr
- Nd
- Pm
- Sm
- Eu
- Gd
- Tb
- Dy
- Ho
- Er
- Tm
- Yb
- Lu

- Th
- Pa
- U
- Np
- Pu
- Am
- Cm
- Bk
- Cf
- Es
- Fm
- Md
- No
- Lr
Fig. 3 $^{87}\text{Sr}/^{86}\text{Sr}$ versus εNd plot glass analyzed in this study. The typical composition of primary glass from the Syro-Palestine and Egypt is indicated.16
One ensemble?
Identifikation von Keramikfiguren Andrea della Robbia (1435 – 1525, Florenz)

Error: \(U (k = 2) \);
Nouveau Art objects (Louis Comfort Tiffany, 1848 – 1933)

Collaboration with the Academy of Fine Arts

- Pb crystal glasses (~25% Pb)
- different layers

Schultheis, Prohaska, Stingeder, Dietrich, Jembrih-Simbürger, Schreiner – JAAS, 19, 2004
Investigation of cultural objects by LA-ICP-MS

- micro destructive
- highly sensitive
- multielement information
- isotopic information
Laser ablation

camera

laser

ion source

aerosol formation

carrier gas (Ar)

laser cell (x, y, z moveable)

Inductively coupled plasma (ICP)
NouveauArt objects
(Louis Comfort Tiffany, 1848 – 1933)

\[\frac{^{207}\text{Pb}}{^{206}\text{Pb}} \]

blue layer

yellow layer

error bars: \(U (k = 2); \)

\[\frac{^{208}\text{Pb}}{^{206}\text{Pb}} \]

\[\frac{^{207}\text{Pb}}{^{206}\text{Pb}} \]

Schultheis, Prohaska, Stingeder, Dietrich, Jembrih-Simbürger, Schreiner – JAAS, 19, 2004
Evidence for glass ‘recycling’ using Pb and Sr isotopic ratios and Sr-mixing lines: the case of early Byzantine Sagalassos

P. Degryse a,*, J. Schneider b, U. Haack b, V. Lauwers c, J. Poblome c, M. Waelkens c, Ph. Muchez d

a Centre for Bio- and Geo-Archaeology, K.U. Leuven, Redingenstraat 16, B-3000 Leuven, Belgium
b Institut für Geowissenschaften und Lithosphärenforschung, Justus-Liebig-Universität, Senckenbergstrasse 3, D-35390 Giessen, Germany
c Departement Archeologie, K.U. Leuven, Blijde Inkomststraat 21, B-3000 Leuven, Belgium
d Fysico-chemische Geologie, K.U. Leuven, Celestijnenlaan 200C, B-3001 Leuven, Belgium

Received 15 July 2004; received in revised form 7 July 2005; accepted 14 September 2005
Isotopic analysis of antimony using multi-collector ICP-mass spectrometry for provenance determination of Roman glass†

Lara Lobo a, Patrick Degryse b, Andrew Shortland c and Frank Vanhaecke *a

aDepartment of Analytical Chemistry, Ghent University, Krijgslaan 281-S12, 9000 Ghent, Belgium. E-mail: Frank.Vanhaecke@UGent.be
bDepartment of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 E-box 2408, 3001 Heverlee, Belgium
cDepartment of Engineering and Applied Science, Cranfield University, Shrivenham, Swindon, SN6 8LA, UK
Pb isotopic composition in pigments

Old Masters’ lead white pigments: investigations of paintings from the 16th to the 17th century using high precision lead isotope abundance ratios

G. Fortunato,a A. Rittera and D. Fabianb

Received 16th December 2004, Accepted 8th March 2005
First published as an Advance Article on the web 15th April 2005
DOI: 10.1039/b418105k
Pb isotopic composition in pigments

Fortunato et al., The Analyst, 2005
Sulfur isotope analysis of cinnabar from Roman wall paintings by elemental analysis/isotope ratio mass spectrometry – tracking the origin of archaeological red pigments and their authenticity

Jorge E. Spangenberg1*, Jošt V. Lavrič1†, Nicolas Meisser2 and Vincent Serneels3

1Institute of Mineralogy and Geochemistry, University of Lausanne, Bâtiment Anthropole, 1015 Lausanne, Switzerland
2Geological Museum of the Canton Vaud, Bâtiment Anthropole, 1015 Lausanne, Switzerland
3Department of Geosciences, University of Fribourg, Pérolles, 1700 Fribourg, Switzerland
S isotopes in pigments of Roman paintings

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aventicum</td>
<td>(n = 12)</td>
</tr>
<tr>
<td>Cosa</td>
<td>(n = 3)</td>
</tr>
<tr>
<td>Almadén</td>
<td>(n = 47)</td>
</tr>
<tr>
<td>Idria</td>
<td>(n = 187)</td>
</tr>
<tr>
<td>Monte Amiata</td>
<td>(n = 10)</td>
</tr>
<tr>
<td>Moschellandsberg</td>
<td>(n = 2)</td>
</tr>
<tr>
<td>Genepy</td>
<td>(n = 2)</td>
</tr>
<tr>
<td>Izmir</td>
<td>(n = 4)</td>
</tr>
</tbody>
</table>

Figure 3. Box plot of δ^{34}S values for the cinnabar from the Roman paintings at Aventicum (Switzerland) and Cosa (Italy)13 and European Hg deposits, displaying the ranges, 25th (1st quartile, Q1) and 75th (3rd quartile, Q3) percentiles, median, and outliers.
Metal analysis in archaeometry

The image presents a periodic table highlighting isotopic systems used in forensics/archaeometry and metal analysis. The table categorizes elements based on isotopic variation and stability.

- **Isotopic systems used in forensics/archaeometry**
 - Isotopes with natural variation
 - Element with >1 stable isotope
 - Element with only 1 stable isotope

- **Isotopic systems used in metal analysis**
 - Elements for which natural isotopic variation has been reported using ICP-MS
 - Element with only non-stable isotopes

The periodic table includes elements from hydrogen (H) to lawrencium (Lr), with annotations indicating the specific isotopes and their stability conditions.
Bronze fibulae: Pb isotopes by LA-ICP-MS
Bronze fibulae: Pb isotopes by LA-ICP-MS

- Grave 23: 0.03% Pb
- Grave 8: 0.51% Pb
- Grave 10: 0.98% Pb

Error bar: $U (k = 2)$
Ag, Cu, Pb multi isotopic fingerprint

Isotopi 16th-1

Anne-Marie Desautel

*Ecole Normale Sup, UMR 5276, 69364 E

Desautel et al., PNAS 108, 2011
AN ASSESSMENT OF OSMIUM ISOTOPE RATIOS AS A NEW TOOL TO DETERMINE THE PROVENANCE OF GOLD WITH PLATINUM-GROUP METAL INCLUSIONS

S. A. JUNK† and E. PERNICKA

TU Bergakademie Freiberg, Institut für Archäometrie, Gustav-Zeuner-Str. 5, D-09596 Freiberg, Germany
TIN ISOTOPE—A NEW METHOD FOR SOLVING OLD QUESTIONS

M. HAUSTEIN¹, C. GILLIS² and E. PERNICKA³

Article first published online: 16 AUG 2010
DOI: 10.1111/j.1475-4754.2010.00515.x

© University of Oxford, 2010
Towards a strontium isoscape for the determination of provenance of wooden artefacts

Monika Horsky¹, Johannes Tintner², Monika Bolka², Michael Grabner², Kerstin Kowarik³, Hans Reschreiter³, Anton Kern³, Micha Horacek⁴ and Thomas Prohaska¹

¹ University of Natural Resources and Life Sciences Vienna, Dept. of Chemistry, Division of Analytical Chemistry, VIRIS Laboratory, Tulln, Austria
² University of Natural Resources and Life Sciences Vienna, Dept. of Material Science and Process Engineering, Institute of Wood Science and Technology, Tulln, Austria
³ Natural History Museum Vienna, Department of Prehistory, Vienna, Austria
⁴ BLT Wieselburg, Lehr- und Forschungseinrichtung Francisco-Josephinum, Wieselburg, Austria
Motivation and Background

Hallstatt – UNESCO world heritage site
- salt mining history of minimum 3500 years
- high content of salt permitted the preservation of organic material

archaeological questions
- origin of wooden findings
 - timber for construction
 - tools
- conclusions on trade routes, infrastructure, organization of prehistoric mining
Project Outline: ISOwood (FWF P23647)

- archaeology
- Sr isotopes
- dendro-chronology
- C, O, H isotopes

NHM Dept. of Prehistory
BOKU Inst. of Wood Science
BOKU VIRIS lab
Francisco-Josephinum Wieselburg
Experimental protocol

samples

- **prehistoric wood** (drill cores, chips)
 - removal of salt using ultrasound assisted leaching
 - microwave assisted digestion
 - \(\text{HNO}_3/\text{H}_2\text{O}_2 \)

- **recent wood** (drill cores)

- **mine repository material** ('Heidengebirge')
 - extraction
 - 1 M \(\text{NH}_4\text{NO}_3 \)

Sr/matrix separation (EICHROM Sr-Resin)

Sr isotope ratio measurement via
- MC-ICP-MS (Nu Plasma HR)
Identification and selection of sampling areas:
1. knowledge of archaeological settlements
2. tree growth regions
3. geological differences on a local scale
Reference values – sampling strategy

Sampling scope:
- 8 regions in Austria
- 1 – 5 geological sub-regions (total 26)
Sampling scope:
- 8 regions in Austria
 - 1 – 5 geological sub-regions (total 26)
- 4 tree species (upon availability)
 - beech (*Fagus sylvatica*)
 - oak (*Quercus sp.*)
 - spruce (*Picea abies*)
 - fir (*Abies alba*)
- total number of trees sampled in duplicate by drilling: 1080
 - one drill core per location and species separated into 2-4 pieces
Results – possible regions of origin

Sr isotope ratios in modern wood (4 tree species) and in one prehistoric tool shaft
Results – possible regions of origin
Results – possible regions of origin

Terrain map of Austria (source: Google Maps)

Combination with δ^{15}N; δ^{18}O; dendrochronology